ファッションカラーコーディネーションに関する研究
—被服色彩としての背景色の影響—
小 林 政 司
吉 村 明 代

1. 緒 言
被服の「似合い」の判断基準のなかで被服の色は非常に重要であると考えられ、さまざまなファッションカラーコーディネーションの手法が注目されている。これらファッションカラーコーディネーションの共通の理解は、被服と着用者の適合性を「似合う」としている点で、特に被服の色と肌の色に重点を置くとともに、肌色の分類、すなわちグループ化を試み、各グループの肌色に似合う被服の色のグループを提示する手法が一般的となっている。しかし、従来の手法の多くは経験的な要素が幅を利かせ、明快な理論的根拠に乏しく、さらに、色の表示も一般の表色系に則っていないためきわめて不可解なものとなっている。[1]

2. 目 的
ここでは、物理学的な事項から心理学的な事項までを一括的に網羅し、かつ一般的な表色系を採用した普遍的で新しいファッションコーディネート手法の構築を最終的な目標とし、基礎研究に着手した。「似合い」の判断基準を、被服の色と着用者の肌の色におき、着用者の肌色の美しさを問うのであれば、これは理想の肌色の存在を示唆することになる。ここで考えるファッションカラーコーディネーションの手法では、これをひとつの大きな前提とする。すなわち、Fig. 1

![Diagram of ideal and actual skin color and effect of the clothing](image-url)

Fig. 1 Relation of ideal and actual skin color and effect of the clothing.
に示すように理想の肌色とそれとは異なった実際の肌色が存在し、これを服の色と組み合わせることにより、理想的の肌色に近づけ似合う、逆に遠ざから似合わないと判断していると仮定する。また、この手法では少なくとも2つの大きな階層を想定しており、第一段階は、物理的なあるいは心理物理学的な色彩の知覚現象に関するものであるが、これに関しては、被服の反射光による加法混色と被服の色と肌色の対比現象が大きなウェイトを占めるものと考えられる。第二段階以降は、もっとも心理的な部分であると考えられる。この部分については、一般的な概念として従来から提案されている色彩調和論などとの関連も予想される。

前報のモデル実験において、色相の異なる背景色上で被験者が示した肌色が、同時対比の影響を受けながらも特定の色の存在を示したことから、基準すなわち理想の肌色が存在すると結論付けた。[2] 今回は、前回の色相に加え、背景色の明度や彩度の影響を調査し、被服モデルとし
ての背景色の影響をより明確にすることを主な目的としている。

3. 実験

3.1. 実験装置および色表示プログラム

色の表示および調整には前報と同じパソコン及びそのシステムを使用した。[2] 今回の実験では、放射輝度測定など表示色の客観的測定を行っていないため、本報告における色の表示は、原則としてコンピュータシステム内で使用したRGB値で行うこととする。

また実験では、前報と同様にMicrosoft、Visual Basicにより作成した色選択プログラムを用
い、肌色を調整法により提示することを試みた。[2] ただし、背景色については、次節に示す方
法でRGB値を決定し、使用した。

3.2. 背景色

前報では、「理想的肌色」の存在とともに背景色の色相の影響に関しても若干の知見を得た。
[2] 今回の実験では、さらに背景色の明度および彩度、すなわちトーンの影響を中心に調査する。

3.2.1. 色相について

今回の実験に用いる色選択プログラムでは、実験条件を一定とするため前回と同じく8色程度の背景色を用いることとした。またこの回数は、実験操作による被験者の疲労を考慮しても適切であると判断した。この中でトーンの多様性を要求されるので、用いる色相を2色相程度に絞込み、その色相内でトーンを変化させる。

2色相については、1928年、Robert Dorrが考案した、カラーキー（color-key）による配色選択法を参考に、黄（Y）と青（B）を選択した。Dorrによると無彩色を含むすべての色には、必ず黄か青か、どちらかのアンダートーン（under-tone）があり、同じアンダートーンの色同士による配色は調和するとされている。その2つの類型すなわちイエローアンダートーン（yellow under-tone、Key 1）とブルーアンダートーン（blue under-tone、Key 2）を現実に示した代表色の見本がカラーキーである。[3, 4] ただし、このDorrの理論の基礎には、色刺激の分析が
あるだけで色覚理論が欠けているとされる。[5]

3.2.2. トーンについて

トーンは、明度と彩度の複合概念といえるもので、色相の同じ系列でも、明・暗、強・弱、濃・淡、浅・深の調子の違いがある。この色の調子の違いをトーンという。[6] このトーンの色空間を設定していることを特徴とする表色系に、PCCS（Practical Color Coordination System）があげられる。PCCSにおけるこの色の調子の違いを表したもので、Fig. 2 であり、各色相は12種のトーンに分けられる。

今回の実験では、色相に加え、トーンの異なる色彩を背景色として利用するため、Fig. 2 に示したトーンの概念を RGB 値に置き換える必要がある。Fig. 3 および Fig. 4 に今回用いた RGB 値を等色相面上に示した。等色相面上では、左側に無彩色軸が位置する。その最上部が白（W）で RGB 値のすべてが 255、最下部が黒（Bk）で値のすべてが 0 である。さらに等色相面の右端に無色が位置する。選択した黄（Y）と青（B）の場合、前者では R および G の値が、後者の場合 B の値がそれぞれ 255、残りの値は、0 となる。さらに、Fig. 2 に示したトーンの等色相面内での位置を考慮し RGB 値の 256 階調を単純に等分する形で、明・暗および彩度を変化させた色彩を得た。

以上のように決定した色選択画面の背景色は、Vivid Yellow（vY）、Light Yellow（ltY）、Grayish Yellow（gY）、Dark Yellow（dkY）、Vivid Blue（vB）、Light Blue（ltB）、Grayish

![Fig. 2 Illustration of the PCCS hue plane.](image)
Fig. 3 RGB value on the PCCS yellow plane.

Fig. 4 RGB value on the PCCS blue plane.
Table 1 RGB value of the background color.

<table>
<thead>
<tr>
<th>Color</th>
<th>abbreviation</th>
<th>R_B</th>
<th>G_B</th>
<th>B_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivid Yellow</td>
<td>vY</td>
<td>255</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>Light Yellow</td>
<td>ltY</td>
<td>255</td>
<td>255</td>
<td>127</td>
</tr>
<tr>
<td>Grayish Yellow</td>
<td>gY</td>
<td>127</td>
<td>127</td>
<td>63</td>
</tr>
<tr>
<td>Dark Yellow</td>
<td>dkY</td>
<td>127</td>
<td>127</td>
<td>0</td>
</tr>
<tr>
<td>Vivid Blue</td>
<td>vB</td>
<td>0</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>Light Blue</td>
<td>ltB</td>
<td>127</td>
<td>127</td>
<td>255</td>
</tr>
<tr>
<td>Grayish Blue</td>
<td>gB</td>
<td>63</td>
<td>63</td>
<td>127</td>
</tr>
<tr>
<td>Dark Blue</td>
<td>dB</td>
<td>0</td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>Gray</td>
<td>Gy</td>
<td>127</td>
<td>127</td>
<td>127</td>
</tr>
</tbody>
</table>

Blue (gB)、Dark Blue (dB) の 8 色である。これらの背景色および灰色 Gy の RGB 値を Table 1 に示した。なお、添え字の B は、background を示す。なお、これらの背景色は、あくまでコンピュータシステム内で用いる RGB 値を基準にしたものであるので視覚系の特性を考慮したとはいいがたい。しかし、本実験では、実験の目的そのものと取り扱いの容易さを重視し、これら背景色を使用することとした。

3.3. 被験者および実験環境

被験者は大阪稲盛女子大学 3、4 年生の女子 20 名とした。被験者には、実験に際して「自分の理想とする肌色」を提示するよう要求した。実験環境、実験の実施方法などは、前報と同様である。[2]

Table 2 Difference of RGB value of the ideal skin color obtained.

<table>
<thead>
<tr>
<th>Background</th>
<th>ideal skin color</th>
<th>$\triangle R_S$</th>
<th>$\triangle G_S$</th>
<th>$\triangle B_S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>R_B</td>
<td>G_B</td>
<td>B_B</td>
<td>R_s</td>
</tr>
<tr>
<td>vY</td>
<td>255</td>
<td>255</td>
<td>0</td>
<td>240.2</td>
</tr>
<tr>
<td>ltY</td>
<td>255</td>
<td>255</td>
<td>127</td>
<td>231.7</td>
</tr>
<tr>
<td>gY</td>
<td>127</td>
<td>127</td>
<td>63</td>
<td>206.0</td>
</tr>
<tr>
<td>dkY</td>
<td>127</td>
<td>127</td>
<td>0</td>
<td>223.6</td>
</tr>
<tr>
<td>vB</td>
<td>0</td>
<td>0</td>
<td>255</td>
<td>225.0</td>
</tr>
<tr>
<td>ltB</td>
<td>127</td>
<td>127</td>
<td>255</td>
<td>232.2</td>
</tr>
<tr>
<td>gB</td>
<td>63</td>
<td>63</td>
<td>127</td>
<td>220.3</td>
</tr>
<tr>
<td>dkB</td>
<td>0</td>
<td>0</td>
<td>127</td>
<td>211.1</td>
</tr>
<tr>
<td>Gy</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>210.1</td>
</tr>
<tr>
<td>average</td>
<td>222.2</td>
<td>182.7</td>
<td>119.7</td>
<td>0</td>
</tr>
</tbody>
</table>
4. 結果および考察

4.1. 「理想の肌色」について

Table 2 の中央部には、背景色を変えて行った実験で得られた「理想の肌色」の RGB 値をそれぞれ全被験者の平均をとって示した。前報 [2] 同様、各背景色上の肌色の RGB 値は、表中の最下部に示した RGB 値それぞれの平均値と 10％程度の差が認められるものの、RGB 値の大小関係などは同一の結果が得られた。また、前報 [2] で得られた RGB 値それぞれの平均値は、225.2、183.2、121.4 であったが、今回の結果もほぼ同様の値が得られている。

4.2. 背景色のトーンの影響

Table 2 は、左の部分に背景色の RGB 構成成分、右の部分に各背景色上で得られた肌色の平均値との差を示す。今回の実験では背景色として、RGB 値の構成成分が 0 から 255 まで段階的に変化する色を用いている。表の中で背景色とその上で求められた「理想の肌色」とを比較してみると、背景色の RGB 値が 255 の場合、「理想の肌色」の RGB 値が平均より大きくなり、逆に背景色の RGB 値が 0 の場合、「理想の肌色」の RGB 値が平均より小さくなる傾向が確認できる。これは、背景を「地」、肌色を「図」とした、同時対比現象 [7, 8] の発生を示すものである。ただし、背景色の RGB 値が 63、127 の場合、「理想の肌色」の RGB 値の増減の傾向は明確ではない。これは、「理想の肌色」の RGB 値が、110 ～240 程度の値を示しており、背景色の RGB 値が 63、127 の場合、これらとの差が小さくなってしまうことに起因すると考えられる。

次に、実験で得られた RGB 値について、それぞれ独立に背景色間での比較を行った。Table 3-1～Table 3-3 は、異なる背景色上で求められた Rs、Gs、Bs の被験者ごとの値を用いて、t 検定を行った結果であり、表の右上部分には、t 値、左下部分には、5％の危険率での有意差の有無を * 印で示した。さらに Table 4-1～Table 4-3 では、表の右上部分に、対応する背景色に RGB の各成分の値を、255＝○、127＝■、64＝△、0＝×のように記号化して表した。たとえば Table 4-1 の場合は、この表が、Rs に関するものなので、左端および上端に並べた背景色のうち対象としている原色 R の成分の値によって、vY、ltY の欄には、○、gY、dkY、ltB の欄には、□、gB の欄には、△、vB、dkB の欄には、×を付す。したがって、vY～vB の欄には、vY は R の成分が 255 なので○、vB は含まないで×ということで、〇×が記入してある。この結果、有意差の認められた 12 の背景色の組み合わせのうち、実に 5 組が〇×（あるいは〇□）、3 組が〇△、2 組が〇□、1 組が□×という結果になった。すなわち 12 の背景色の組み合わせのうち、11 組に比較した背景色のうち対象となる原色の値に差が存在したことになる。これは、原色の単位で背景色の影響を検討した場合にも、同時対比現象の発現を認め得る結果といえる。

4.3. 背景色の影響

今回の実験では、各背景色をコンピュータシステムの RGB 値を用いて規定したが、この値と「理想の肌色」の RGB 値の関係を Fig. 5 に示した。また、相関分析により得られた回帰式は次式の通りである。
Table 3—1

Value obtained by difference test between R_s on various background.

<table>
<thead>
<tr>
<th>R_s</th>
<th>vY</th>
<th>ltY</th>
<th>gY</th>
<th>dkY</th>
<th>vB</th>
<th>ltB</th>
<th>gB</th>
<th>dkB</th>
</tr>
</thead>
<tbody>
<tr>
<td>vY</td>
<td>0.8191</td>
<td>2.9470</td>
<td>2.0258</td>
<td>1.5254</td>
<td>1.0367</td>
<td>2.3163</td>
<td>3.2976</td>
<td></td>
</tr>
<tr>
<td>ltY</td>
<td>1.8844</td>
<td>0.7465</td>
<td>0.5458</td>
<td>0.0475</td>
<td>1.0177</td>
<td>1.8117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gY</td>
<td>*</td>
<td>1.4494</td>
<td>1.4241</td>
<td>2.2256</td>
<td>1.1573</td>
<td>0.4055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dkY</td>
<td>*</td>
<td>0.1374</td>
<td>1.0224</td>
<td>0.3500</td>
<td>1.3129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vB</td>
<td></td>
<td>0.7092</td>
<td>0.4332</td>
<td>1.2622</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ltB</td>
<td>*</td>
<td>1.3485</td>
<td>2.3313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gB</td>
<td>*</td>
<td></td>
<td>0.9359</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dkB</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: significant difference $> 5\%$

Table 3—2

Value obtained by difference test between G_s on various background.

<table>
<thead>
<tr>
<th>G_s</th>
<th>vY</th>
<th>ltY</th>
<th>gY</th>
<th>dkY</th>
<th>vB</th>
<th>ltB</th>
<th>gB</th>
<th>dkB</th>
</tr>
</thead>
<tbody>
<tr>
<td>vY</td>
<td>0.5971</td>
<td>0.9621</td>
<td>0.7287</td>
<td>0.7965</td>
<td>0.7595</td>
<td>1.6797</td>
<td>2.2571</td>
<td></td>
</tr>
<tr>
<td>ltY</td>
<td>1.5303</td>
<td>1.3012</td>
<td>1.4794</td>
<td>1.4665</td>
<td>2.2604</td>
<td>2.8295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gY</td>
<td>0.2297</td>
<td>0.3399</td>
<td>1.4118</td>
<td>0.6633</td>
<td>1.2286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dkY</td>
<td>0.0707</td>
<td>0.1348</td>
<td>0.9026</td>
<td>1.4686</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vB</td>
<td>0.0805</td>
<td>1.1424</td>
<td>0.2563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ltB</td>
<td></td>
<td>1.2440</td>
<td>1.9249</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gB</td>
<td>*</td>
<td></td>
<td>0.5863</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dkB</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: significant difference $> 5\%$

Table 3—3

Value obtained by difference test between B_s on various background.

<table>
<thead>
<tr>
<th>B_s</th>
<th>vY</th>
<th>ltY</th>
<th>gY</th>
<th>dkY</th>
<th>vB</th>
<th>ltB</th>
<th>gB</th>
<th>dkB</th>
</tr>
</thead>
<tbody>
<tr>
<td>vY</td>
<td>0.8881</td>
<td>0.3357</td>
<td>0.3941</td>
<td>1.5059</td>
<td>2.0032</td>
<td>0.5691</td>
<td>1.1217</td>
<td></td>
</tr>
<tr>
<td>ltY</td>
<td>1.1235</td>
<td>1.1989</td>
<td>0.3894</td>
<td>0.6956</td>
<td>0.5831</td>
<td>0.1404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gY</td>
<td>0.0279</td>
<td>1.7515</td>
<td>2.2774</td>
<td>0.9319</td>
<td>1.3648</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dkY</td>
<td>1.8874</td>
<td>2.4827</td>
<td>1.0859</td>
<td>1.4630</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vB</td>
<td></td>
<td>0.3197</td>
<td>1.2443</td>
<td>0.2563</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ltB</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1.8517</td>
<td>0.5745</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gB</td>
<td></td>
<td></td>
<td></td>
<td>0.8244</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dkB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: significant difference $> 5\%$
Table 4 – 1 Results of difference test between Rs on various background.

<table>
<thead>
<tr>
<th>Rs</th>
<th>vY</th>
<th>ltY</th>
<th>gY</th>
<th>dkY</th>
<th>vB</th>
<th>ltB</th>
<th>gB</th>
<th>dkB</th>
</tr>
</thead>
<tbody>
<tr>
<td>vY</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>ltY</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>gY</td>
<td>*</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>dkY</td>
<td>*</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>vB</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>ltB</td>
<td>*</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>gB</td>
<td>*</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>dkB</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*: significant difference > 5 %

Table 4 – 2 Results of difference test between Gs on various background.

<table>
<thead>
<tr>
<th>Gs</th>
<th>vY</th>
<th>ltY</th>
<th>gY</th>
<th>dkY</th>
<th>vB</th>
<th>ltB</th>
<th>gB</th>
<th>dkB</th>
</tr>
</thead>
<tbody>
<tr>
<td>vY</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>ltY</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>gY</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>dkY</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>vB</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>ltB</td>
<td>*</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>gB</td>
<td>*</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>dkB</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*: significant difference > 5 %

Table 4 – 3 Results of difference test between Bs on various background.

<table>
<thead>
<tr>
<th>Bs</th>
<th>vY</th>
<th>ltY</th>
<th>gY</th>
<th>dkY</th>
<th>vB</th>
<th>ltB</th>
<th>gB</th>
<th>dkB</th>
</tr>
</thead>
<tbody>
<tr>
<td>vY</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>ltY</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>gY</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>dkY</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>vB</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>ltB</td>
<td>*</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>gB</td>
<td>*</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
<td>☐☐</td>
</tr>
<tr>
<td>dkB</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*: significant difference > 5 %
$R_s = 0.0684R_B + 214.03 \quad r^2 = 0.3033$

$G_s = 0.0755G_B + 173.59 \quad r^2 = 0.6546$ \hspace{1cm} (1)

$B_s = 0.0958B_B + 108.15 \quad r^2 = 0.8050$

R の相関係数は、やや小さいが、それぞれ正の相関を示す結果が得られている。この結果も、原色の単位で背景色の影響を検討した場合での、同時対比現象の発現を認める結果といえる。

ここで、仮に背景色を Gy とした場合、RGB 値はすべて 127 であり、これを式 (1) に代入して「理想の肌色」の RGB 値を求めると、$R_s=222.7, G_s=183.1, B_s=120.3$ を得ることができる。

5. 結論

今回の実験でも、「理想の肌色」として特定の色が認められた。また、背景色のトーンの影響としては、前報の色相の影響と同様、一般的な色相に認められる同時対比効果が現れた。したがって各個人の肌色が、この「理想の肌色」に近づくような対比効果をもたらす被服の存在が示唆された。

6. 謝辞および追記

本研究の遂行には、大阪樟蔭女子大学 中間ゆかり、森田麻起子、両氏の協力を得た。[9] ここに記して、謝意を表す。

また、本報告の一部を、日本繊維製品消費科学会 2003 年年次大会（奈良）において発表した。[10]
参考文献
1. 小林政司、「似合いの様相－被服の色彩に関して－」、大阪樟蔭女子大学（学芸学部）論集、39、117–128（2002）
2. 小林政司、「ファッションカラーコーディネーションに関する研究－理想の肌色は存在するのか－」、大阪樟蔭女子大学（学芸学部）論集、40、119–127（2003）
3. 貞子ネルソン、「新カラーコーディネート術」、現代書林、1994
5. 日本色彩学会編、「新編 色彩科学ハンドブック（第 2 版）」、東京大学出版会、1999
6. 大井義雄、川崎秀昭、「カラーコーディネータ入門 色彩」、日本色研事業、1996
7. 江島義道、「色の対比現象と側制御機構」、繊維製品消費科学、42 [12]、811–815（2001）
8. ファッションカラー編集部編、「おしゃれな色の選び方」、日本色研事業、1999
9. 中間ゆかり、森田亜起子、「ファッションカラーコーディネーションに関する研究」、大阪樟蔭女子大学卒業論文、2003
10. 小林政司、吉村明啓、「ファッションカラーコーディネーションに関する研究－肌色に対する背景色の影響－」、日本繊維製品消費科学会 2003 年年次大会研究発表要旨、142、143（2003）